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Abstract—Machine learning is nowadays ubiquitous, providing
mechanisms for supporting decision making that leverages big
data analytics. However, this recent rise in importance of machine
learning also raises societal concerns about the dependability
and trustworthiness of systems which depend on such automated
predictions. Within this context, the new general data protection
regulation (GDPR) demands that organizations take the appro-
priate measures to protect individuals’ data, and use it in a
privacy-preserving, fair and transparent fashion. In this paper
we present how fairness and transparency are supported in the
ATMOSPHERE ecosystem for trustworthy clouds. For this, we
present the scope of fairness and transparency concerns in the
project and then discuss the techniques that are being developed
to address each of these concerns. Furthermore, we discuss how
fairness and transparency are used with other quality attributes
to characterize the trustworthiness of cloud systems.

I. INTRODUCTION

Machine Learning (ML) is nowadays ubiquitous, as most
organizations take advantage of it to perform or support
decisions within their systems [1], [2]. ML is an area of
Artificial Intelligence (AI) in which we use a set of statistical
methods and computational algorithms to allow computers
to learn from data [3]. ML algorithms can be divided into
two main groups: supervised and unsupervised. Supervised
learning involves the development of computational models
for estimating an output based on previously known inputs
and outputs. In unsupervised learning, the models are built
based solely on existing inputs but there are no associated
outputs that may be used for sake of training. We may face
fairness and transparency issues for both groups of algorithms.

It is now commonplace to run ML systems in cloud-based
infrastructures, motivated by issues such as elasticity, robust-
ness, and ease of operation [4]. In practice, cloud services
are fueling big data analytics, allowing organizations to make
better and faster decisions using data that previously were hard
or impossible to use [5]. This raises many opportunities in
today’s competitive environment, by offering many services
using highly scalable technologies on a pay-as-you-go basis.
However, it also creates new challenges regarding trust, a
paramount concern in critical systems [5].

Regulatory institutions have long focused these properties
namely in OECD’s fair information practices [6] and in EU
Privacy Directive 95/46/EC [7]. However, such legislation
has never received as much emphasis as now. The new EU

General Data Protection Regulation (GDPR) [8] shifts the onus
to the organizations, demanding them to demonstrate that they
are taking the appropriate measures to protect the legal rights
of the individuals and their data, requiring privacy-preserving,
fair and transparent systems.

The ATMOSPHERE project (atmosphere-eubrazil.eu) aims at
developing an ecosystem to support the design and develop-
ment of next generation trustworthy cloud services on top of an
intercontinental hybrid and federated resource pool. It consid-
ers trustworthiness as depending on many properties such as
security, dependability, and privacy assurance among others.
Moreover, data become a first class citizen, as trustworthiness
also depends greatly on respecting data subject rights.

In this context, Fairness and Transparency emerge as
key properties for the trustworthiness of cloud systems while
processing big data. Fairness is concerned with the assurance
of ethical and legal rights. For instance, a fair classifier
does not discriminate subjects based on sensitive attributes
such as gender or race [9]. Transparency involves multi-
ple sub-dimensions, such as awareness, access, explanation,
provenance, auditability and accountability [8]. As ML gains
importance, in recent years the Computer Science community
(fatml.org, fatconference.org) has invested efforts on fairness
and transparency concerns.

In this paper we present how ATMOSPHERE addresses
fairness and transparency towards more trustworthy systems.
In practice, it provides an ecosystem for the quick development
of large-scale data processing services, endowing them with
trustworthy support at the data management and infrastructure
layer and with capabilities for trustworthiness monitoring,
assessment and adaptation. These services are built using the
Lemonade [10] platform. Lemonade is a scalable and efficient
visual programming based platform for cloud-based big data
analytics. The platform allows users to be compliant with
GDPR, and its ecosystem gives control over the complete stack
of the services, providing the necessary information and means
to measure and assess these properties.

From the context of the project we introduce an initial set
of techniques that are being developed not just to support but
also to monitor and assess fairness and transparency in the
context of ML applications and systems. Finally, we present
concrete examples of practical application of these techniques
in Lemonade, and how they integrate with other components.
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Fig. 1. The model of the ATMOSPHERE project.

II. CONTEXT AND MOTIVATION

Trust can be defined as the accepted dependence of
a component/user on a set of properties which are pro-
vided/implemented by another component, subsystem or sys-
tem [11]. Then, trustworthiness can be defined as the measure
in which a component, subsystem or system, meets such
properties [11]. Throughout this section, we describe ATMO-
SPHERE, as well as fairness and transparency within the
context of ML systems.

A. Atmosphere

ATMOSPHERE considers a cloud model comprising three
layers and defines the relevant trustworthiness properties for
each layer: cloud resources, data management services, and
data processing services. Fig. 1 depict these layers and how
they interact considering its trustworthiness assessment frame-
work, resources and applications.

As we can observe, there is a trustworthiness assessment
framework that receives from all layers of the system the
necessary information to assess and monitor the relevant
trustworthiness properties. Based on those properties, ATMO-
SPHERE will provide a continuous, global score of trust
for an application, which is a function of the following
properties: security, privacy assurance, coherence, isolation,
stability, fairness, transparency and dependability.

As depicted in Fig. 2, ATMOSPHERE considers measuring
trust both a priori (before deployment) and dynamically during
execution (at runtime). In practice, applications are deployed
only after satisfying the required levels of trustworthiness.
After that, the relevant properties are monitored to verify
whether the required levels are maintained, as the trust in the
application may be affected by changes in the environment
and workload, security attacks, and resources’ availability.

These scores may be used by the application developer,
the application itself or the execution framework for adjusting
parameters to increase trust or to react to runtime failures in
federated infrastructures, up to the limits on resource allocation
that a user may have set - avoiding infinite consumption of
resources.
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Fig. 2. The lifecycle of ATMOSPHERE applications.

Fairness and transparency are mainly monitored at the layer
of the data processing services, which are introduced in the
next subsection.

B. Trustworthy Data Processing Services

This layer of the ATMOSPHERE ecosystem will provide
a set of tools, libraries and services that will support users
to build trustworthy services for processing large data sets.
Therefore, this layer will provide primitives, metrics and tools
that enable developers to consider privacy, security, fairness
and transparency properties in the development of their cloud
services.

The key component of this layer is Lemonade (Live Ex-
ploration and Mining Of Non-trivial Amount of Data from
Everywhere) [10]. Lemonade is a visual platform for dis-
tributed computing, aimed to enable implementation, experi-
mentation, test and deploying of data processing and machine
learning applications. It provides a higher level of abstraction,
called operation, to users build processing workflows using
a graphical web interface. By using high performance and
scalable technologies, such as BSC COMPSs [12] and Apache
Spark [13], Lemonade enables the processing of very large
amount of data, hiding all back-end complexity from users and
allowing them to focus mainly on the construction of solutions,
models and services. Details are presented in Section IV-A.

Due to the proximity to the application, this is the layer
better supporting the measurement of fairness and transparency
in the context of ATMOSPHERE. In practice, as it will be
described in Section IV, the tools, libraries and services to be
provided will include a set of fairness-aware or transparency-
aware versions that are available to the user, and also special
components to be added to the data processing workflows. The
metrics obtained are then integrated with the trustworthiness
assessment framework for the computation of the global
scores.

C. Data Analytics and Machine Learning

Tools such as Deep Learning [14] and Generative Adversar-
ial Networks [15] (GANs) have gained momentum as major



techniques in the ML field. In spite of the unquestionable
success that these techniques have achieved, they are not ex-
empt from criticisms. For instance, although recent attempts to
understand the models learned from data using Deep Learning
or GANs do exist [16], [17], for the majority of end-users and
services these models are still viewed as black-boxes. A black-
box is an algorithm where its implementation is opaque, i.e., it
is difficult to understand the inner workings of of the method.
People have accepted the black-box nature of Deep Learning
models over the years due to the their good performance on
many tasks.

Nevertheless, when our goal is to develop ML methods
where interpretability is a necessity, we might move towards
other type of ML algorithms such as Decision Trees [18] or a
Logistic Regression. The resulting models of both algorithms
allow some degree of understanding of its inner workings. For
instance, trees can be specified in terms of if-then-else rules,
whereas Logistic Regression learns interpretable parameters
from data.

An interpretable ML model is a model that is able to explain
its reasoning in comprehensible terms to a human [19]. This is
very important, because it can be used to measure the fairness
of a system. In this case, fairness means that the model is
not biased, nor discriminating a certain group or groups. It is
also possible to link interpretability to transparency, since, in
principle, the more interpretable the model is, the more trans-
parent it is. Over the next section we discuss ATMOSPHERE’s
approach to tackle Transparency and Fairness requirements.

III. FAIRNESS AND TRANSPARENCY
ASSESSMENT AND ASSURANCE IN ATMOSPHERE

Before delving into the details of the approaches employed
for the assessment and assurance of fairness and transparency,
it is necessary to analyze the scope of our concerns and
actions. As the problem is rather broad, this analysis must
be performed according to multiple dimensions, as follows.

The first dimension is regarding who we are concerned or
trying to help. Three main agents should be considered:

o Compliant Organization — organizations that plan to
provide fair and transparent services, but may lack the
resources or knowledge. These organizations need cost-
effective solutions.

o Non-Compliant Organizations — organizations are not
concerned with providing fair and transparent services.
Sooner or later (e.g. due to legal reasons), it will be nec-
essary to assess the level to which they are disrespecting
fairness and transparency principles.

e Malicious Users — attackers may exploit weaknesses in
the models to cause fairness and transparency issues. It
is necessary to provide organizations with tools that help
them understand how resilient their systems are to attacks.

The second dimension is in which phase of the application

development lifecycle it is possible to act. An overview of this
dimension is presented in Fig. 3. As it is possible to observe,
two main phases are considered, mapping to the lifecycle
presented in Section II-A: development (which happens before
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Fig. 3. Fairness and transparency in the applications development lifecycle.

the deployment of the application), and production (which
represents the execution of the application after deployment).

During model development two main phases are usually
considered: training and validation. While training, it is pos-
sible to use techniques for recommending models that better
suit the characteristics of the dataset and domain, avoid the
use of protected attributes. When validating the model, two
main activities may be performed: function level evaluation,
which do not depend on humans, and human level evaluation,
which, instead, relies on human input.

During production, the activities are divided into runtime
monitoring, which allows to passively obtain information
that may be used for assessment, and at application level
evaluation, which depends on human input, namely domain
expertise.

The final dimension is the type of strategy that will be
employed. Fig. 4 provides an overview of the systematization
of the potential strategies to address these challenges.

As we can observe, there are two main types of techniques:
the ones that use interpretable models and the ones that are
agnostic to the model.

The easiest and straightforward way to achieve interpretabil-
ity in machine learning is to use only a subset of algorithms
that are well known to be interpretable. Typical model in-
terpretable types are Logistic Regression and Decision Trees.
The main drawback of this approach is that such models have
limited expressiveness and thus might be unsuited to model
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Fig. 4. Classes of the techniques to use for fairness and transparency.



complex data.

Model agnostic interpretability models, on the other hand,
refer to separating the explanations from the machine learning
model [20]. Thus, the machine learning developer does not
need to sacrifice performance for interpretability and is free to
use any machine learning model she likes. Two representatives
of this kind of approach are: (i) feature importance, that
measures in a model agnostic way the importance of features
(which are used for explanations) [21], and (ii) local surrogate
models, that fit local, interpretable models that can explain
single predictions of any machine learning model [22].

In empirical assessment we include techniques based on
tests that may use specially crafted inputs adapted for sake of
fairness validation, in a similar fashion to what is employed
nowadays for reliability and dependable systems. Although
less complete, these techniques usually are more flexible and
scalable, and therefore applicable to more situations.

A. Transparency Assessment and Assurance

One of the first attempts to formulate evaluation strategies
for assessing interpretability in Machine Learning is proposed
by Doshi-Velez and Kim [19]. They propose a three-level
taxonomy of evaluation approaches, briefly summarized next.

o Application level evaluation: The explanations are inte-
grated into the outputs of the final model such that end
users (in this case domain experts) can evaluate it. This
requires a clear idea on how to assess the quality of
explanations, for example, comparing to the explanations
given by domain experts to the same decision.

o Human level evaluation: This corresponds to a simplified
version of the application level evaluation. The difference
is that here domain experts are not required, thus making
experiments cheaper and more feasible.

« Function level evaluation: Here humans are not required.
This is more efficient when the models used are already
well understood by humans. If it is known, for example,
that users understand well decision trees, a measure of
explanation quality might be the depth of the tree, i.e.,
shallow trees would get a better explainability rating.

Transparency can also be measured based on the minimum
description length (MDL) of the model. For this, it is necessary
to build an interpretable model from the outputs of the original
one and calculate its MDL as a transparency metric.

Finally, there are aspects of transparency related to the
purpose for which data are used, as GDPR also contemplates
the right of the data subject to “be informed of the existence
of the processing operation and its purposes” [8]. For this, it
is necessary to track at runtime the application for which each
data element is used. This can to be done at multiple granu-
larities, on a trade-off between information and performance.

B. Fairness Assessment and Assurance

Complementing Transparency, Fairness evaluation is also
a challenge. That is, Fairness issues may rise directly due
to biases in the data [23]. Also, Fairness issues arise when
loss functions are ill-defined and feedback-loops exist in the

system [23]. We now detail such issues within the scope of
the ATMOSPHERE project. We also present proposals on how
to evaluate them. In order to understand fairness, consider for
instance a classifier trained for the task of identifying health
risks based on subject features.

o Selective Sampling/Labelling: The classifier above may
be trained with data that was either sampled or labelled
selectively. For instance, crowd-workers may label data
based on pre-conceived relations between gender and
health risks. Also, the dataset may be biased towards
certain social-demographic variables. On the deployment
phase, identifying under-represented or over-represented
groups of subjects may mitigate such issue. Moreover,
dropping labels where no significant agreement between
labelers exist can also help. At the scope of the ATMO-
SPHERE project, we shall evaluate the representation of
subjects/labels, helping end-users identify such settings
and act accordingly.

o Unfair Features: Columns of a table, or features, may
also present Fairness issues. Some of such features can
even be illegal to train ML algorithms on [23]. Dropping
such columns and/or anonymizing others are a natural
procedure to deal with such a problem. By leveraging
representation metrics (e.g., features which are skewed),
as well current regulations, the ATMOSPHERE model
will help end-users decide whether columns will be
explored or not.

o Loss Functions: The loss function of ML algorithms may
also be subject to biases and fairness issues. In fact, loss
functions prone to less biases are gaining the attention of
the scientific community (see fatml.org). Recently, novel
techniques exist which can deal with representation issues
directly in the training phase [24], [25]. Such techniques
can be provided to the end-user within the Lemonade
framework.

o Fault Injection: studies have shown that models can be
easily affected by adding small perturbations in the in-
puts [26]. In line with these findings, and inspired in what
has been done in computing systems for dependability
assessment, we will propose techniques to systematically
generate fault models focused on fairness, for the specific
application domain in question taking advantage of the
input datasets.

o Feedback loops: Finally, feedback loops occur when user
actions guided by ML algorithms decrease trustworthi-
ness. In our example, medical actions guided by an
algorithm (e.g., a correlation between race and a certain
risk), can increase biases when such data is used to re-
train new models. Even though feedback loops rise due
to user actions, it is possible to employ recent techniques
as to detect their presence [27].
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IV. PRACTICAL APPLICATION

As explained in Section II, it is expected that end-users will
access the ATMOSPHERE model through an ML framework.
Currently, we are extending Lemonade for supporting trust-
worthiness properties. In this section, we detail the Lemon-
ade [10] platform and discuss the approach to address Fairness
and Transparency.

A. Lemonade

Lemonade is a visual programming ML framework. A
service, in Lemonade platform, has two distinct moments
regarding its execution: design time and production time. In
design time, a business specialist, data scientist or any other
professional working with data, uses the tool to explore data
or perform experiments. Many adjustments may be performed,
for example, model generation tuning and settings related
to privacy. Any time, the professional may modify, execute
the workflow and receive feedback (success/failure, samples
of data, visualizations) from Lemonade. In general, this is a
cycle that repeats until the professional is confident about the
result, for example, when it produces the correct outcomes
or a metric is satisfied. When the design process resumes,
the resulting workflow may be deployed as a service. In this
case, the resulting workflows of Lemonade are executed in
production time. The professional can deploy a Lemonade
workflow by pressing a button in the interface and configuring
the deployment parameters of the service. Lemonade deploys
the workflow as a microservice that provides a REST APIL
Finally, applications may be built by the composition of
different Lemonade microservices.

Under the hood, Lemonade includes a source code gen-
erator. It generates code compatible with Python language,
targeting the chosen execution platform. For example, a user
may choose Apache Spark as execution platform and, in this
case, Lemonade generates a valid PySpark (Python code that
includes Spark API calls). In design time, the generated source
code is submitted to a job scheduler (Apache Mesos, Apache
Yarn) or a container orchestration service (Kubernetes). The
job scheduler (or container service) allocates resources (pro-
cessing nodes, memory, CPUs, GPGPUs) according to QoS
parameters specified in Lemonade and then executes the code.
In production time, the process is similar, but, in this case, to
guarantee the continuous execution of the Lemonade service,
a high availability service, such as Mesosphere Marathon, is
used. It restarts Lemonade service in case of failures and notify
administrators in case of fatal failures.

B. Fairness and Transparency in Lemonade

We foresee at least 3 different strategies to implement
trustworthiness assurance in Lemonade: (1) by injecting vali-
dations/control code during the source code generation; (2) by
wrapping existing operations as new operations and including
the validation/control code in the new implementation (compo-
sition of operations); (3) by extending the workflow primitives
in Lemonade to include a operation IF/Decision that evaluates
a conditional when the code is executed.
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Fig. 5. Representation of a Fairness aware classifier in Lemonade

All of the three approaches above will operate either as a
decorator or as a composition pattern to guarantee trustwor-
thiness. That is, Lemonade currently provides end-users with
several ML algorithms to be exploited.

One example of Fairness assessment using Lemonade is
shown in Figure 5. Based on the figure, we foresee a Fairness
evaluation component which compares the output of two
models. One model (on the right), is trained using the original
dataset. The other model is trained on a projection of the
data which deals with Fairness as described in the previous
section. For instance, this projection may be a sub-sample of
the data after features dropped or biases are removed (e.g., by
re-sampling). Both models are applied and evaluated resulting
in three outputs: (1) a plain model; (2) a non-sensitive (or
fair) model; and, (3) a fairness evaluation which compares the
efficacy of the two models.

In Figure 6 we present an example focused on Transparency.
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Fig. 6. Representation of a transparency aware/model interpretable classifier
in Lemonade



Again, two models are trained on the same input data. How-
ever, in this setting, models use the same input data. Then, the
Minimum Description Length (MDL) of both models may be
computed and compared. MDL captures a trade-off between
model accuracy and simplicity. As in Occam’s Razor, simpler
explanations should be favored in contrast to complex ones.
Simpler models will possibly be more interpretable and useful
for end-users.

These examples show how we are exploring Lemonade as
the framework users will explore in ATMOSPHERE. In the
next section, we shall conclude the paper presenting some of
our proposals for the future of ATMOSPHERE’s model.

V. CONCLUSIONS AND FUTURE WORK

Fairness and transparency are key properties in face of
the increasing adoption of machine learning algorithms to
processing the large amounts of data available.

In this paper we presented the research plans for the way
ATMOSPHERE will address fairness and transparency in its
ecosystem for trustworthy clouds. Lemonade has a key role in
this process, as it will allow developing, testing and deploying
of data processing and machine learning applications. By en-
dowing Lemonade with fairness and transparency capabilities,
we will be allowing the development of better applications.

These properties will be handled together with other prop-
erties that may have conflicting objectives, such as confiden-
tiality. Although this represents a challenging proposition, it
will allow that fairness and transparency are considered in real
applications for relevant scenarios.
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